Dowiedz się: jak upraszczać wyrażenia z pierwiastkami, jak wyłączyć czynnik przed pierwiastek, jak w skuteczny sposób rozwiązywać skomplikowane wyrażenia z pierwiastkami.
Dowiedz się: jak obliczyć objętość walca, stożka i kuli, jak obliczyć pole powierzchni walca, stożka i kuli, jak określić przekroje osiowe walca, stożka i kuli.
Dowiedz się: czym jest potęga o wykładniku wymiernym, jak obliczać potęgi o wykładniku wymiernym, jak zamienić potęgę o wykładniku wymiernym na pierwiastek.
Dowiedz się: jak upraszczać wyrażenia wykorzystując potęgi o wykładniku wymiernym, jak skutecznie obliczać wyrażenia z potęgami o wykładnikach wymiernych.
Dowiedz się: jak udowodnić podzielność liczb zawierających potęgi, jak wykazać równość wyrażeń z potęgami i pierwiastkami, jak rozwiązywać zadania dowodowe z wykorzystaniem praw działań na potęgach i pierwiastkach.
Dowiedz się: jak obliczyć pole sześciokąta foremnego, jak wyprowadzić wzór na pole sześciokąta foremnego, jak obliczyć długości przekątnych sześciokąta foremnego.
Poziom: Szkoła Podstawowa VII-VIIISzkoła Ponadpodstawowa
Punkty podstawy: MAT-SP78-IX.1MAT-LIC-VIII.3MAT-LIC-VIII.12
Dowiedz się: czym są pierwiastki kwadratowe, pierwiastki sześcienne i pierwiastki wyższych stopni, jak obliczać pierwiastki wyższych stopni, jak obliczać wyrażenia z pierwiastkami.
Dowiedz się: jak narysować wykres funkcji na podstawie wzoru, jak rozpoznać funkcję liniową, jak rozpoznać wykres funkcji liniowej, jak rozpoznać wykres, który nie jest wykresem funkcji.
Dowiedz się: które twierdzenia dotyczące logarytmów warto zastosować w podanej sytuacji, jak zastosować twierdzenie o dodawaniu logarytmów, jak zastosować twierdzenie o odejmowaniu logarytmów, jak zastosować twierdzenie o potędze liczby logarytmowanej, jak rozwiązać zadanie z logarytmami, których nie da się policzyć.
Dowiedz się: czym się różni kwadrat sumy od sumy kwadratów, jak stosować wzór skróconego mnożenia na kwadrat sumy, jak wykorzystywać wzór na kwadrat sumy w zadaniach z pierwiastkami, jak graficznie przedstawić wzór skróconego mnożenia na kwadrat sumy.
Dowiedz się: co to jest ciąg arytmetyczny, czym jest różnica ciągu arytmetycznego, jak wygląda wzór rekurencyjny ciągu arytmetycznego, jak wygląda wzór ogólny ciągu arytmetycznego, jak sprawdzić, czy dany ciąg jest arytmetyczny.
Dowiedz się: jak wygląda wzór skróconego mnożenia na sześcian różnicy, jak korzystać ze wzoru na sześcian różnicy, jak udowodnić prawdziwość wzoru na sześcian różnicy, jak przekształcać wyrażenia korzystając ze wzoru na sześcian różnicy.
Dowiedz się: jak obliczać wartości wielomianu z użyciem schematu Hornera, jak dzielić dowolne wielomiany przez dwumian postaci x−c wykorzystując schemat Hornera.
Dowiedz się: jak metodą grupowania wyrazów doprowadzać wielomiany do postaci iloczynowej, jak zapisywać wielomiany w postaci iloczynowej wyciągając wspólny czynnik przed nawias, jak wykorzystywać wzory skróconego mnożenia do rozkładania wielomianów na iloczyn czynników.
Poziom: Szkoła Ponadpodstawowa
Punkty podstawy: MAT-LIC-III.5MAT-LIC-III.6MAT-LIC-II.4
Strona korzysta z plików cookies w celu realizacji usług zgodnie z Polityką prywatności. Możesz określić warunki przechowywania lub dostępu do cookie w Twojej przeglądarce lub konfiguracji usługi. Czytaj więcej...